Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Public Health ; 214: 85-90, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2238864

ABSTRACT

OBJECTIVES: Over time, papers or reports may come to be taken for granted as evidence for some phenomenon. Researchers cite them without critically re-examining findings in the light of subsequent work. This can give rise to misleading or erroneous results and conclusions. We explore whether this has occurred in the widely reported outbreak of SARS-CoV-2 at a rehearsal of the Skagit Valley Chorale in March 2020, where it was assumed, and subsequently asserted uncritically, that the outbreak was due to a single infected person. STUDY DESIGN: Review of original report and subsequent modelling and interpretations. METHODS: We reviewed and analysed original outbreak data in relation to published data on incubation period, subsequent modelling drawing on the data, and interpretations of transmission characteristics of this incident. RESULTS: We show it is vanishingly unlikely that this was a single point source outbreak as has been widely claimed and on which modelling has been based. CONCLUSION: An unexamined assumption has led to erroneous policy conclusions about the risks of singing, and indoor spaces more generally, and the benefits of increased levels of ventilation. Although never publicly identified, one individual bears the moral burden of knowing what health outcomes have been attributed to their actions. We call for these claims to be re-examined and for greater ethical responsibility in the assumption of a point source in outbreak investigations.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Disease Outbreaks , Washington , Morals
2.
Epidemiol Infect ; 150: e104, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1947148

ABSTRACT

Lockdowns have been a core infection control measure in many countries during the coronavirus disease 2019 (COVID-19) pandemic. In England's first lockdown, children of single parent households (SPHs) were permitted to move between parental homes. By the second lockdown, SPH support bubbles between households were also permitted, enabling larger within-household networks. We investigated the combined impact of these approaches on household transmission dynamics, to inform policymaking for control and support mechanisms in a respiratory pandemic context. This network modelling study applied percolation theory to a base model of SPHs constructed using population survey estimates of SPH family size. To explore putative impact, varying estimates were applied regarding extent of bubbling and proportion of different-parentage within SPHs (DSPHs) (in which children do not share both the same parents). Results indicate that the formation of giant components (in which COVID-19 household transmission accelerates) are more contingent on DSPHs than on formation of bubbles between SPHs, and that bubbling with another SPH will accelerate giant component formation where one or both are DSPHs. Public health guidance should include supportive measures that mitigate the increased transmission risk afforded by support bubbling among DSPHs. Future network, mathematical and epidemiological studies should examine both independent and combined impact of policies.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Child , Communicable Disease Control , England/epidemiology , Family Characteristics , Humans , Policy , Single Parent
3.
Epidemiology and Infection ; 150, 2022.
Article in English | EMBASE | ID: covidwho-1677256

ABSTRACT

This paper proposes and analyses a stochastic model for the spread of an infectious disease transmitted between clients and care workers in the UK domiciliary (home) care setting. Interactions between clients and care workers are modelled using specially generated networks, with network parameters reflecting realistic patterns of care needs and visit allocation. These networks are then used to simulate a susceptible-exposed-infected-recovered/dead (SEIR/D)-type epidemic dynamics with different numbers of infectious and recovery stages. The results indicate that with the same overall capacity provided by care workers, the minimum peak proportion of infection and the smallest overall size of infection are achieved for the highest proportion of overlap between visit allocation, i.e. when care workers have the highest chances of being allocated a visit to the same client they have visited before. An intuitive explanation of this is that while providing the required care coverage, maximising overlap in visit allocation reduces the possibility of an infectious care worker inadvertently spreading the infection to other clients. The model is generic and can be adapted to any directly transmitted infectious disease, such as, more recently, corona virus disease 2019, provided accurate estimates of disease parameters can be obtained from real data.

SELECTION OF CITATIONS
SEARCH DETAIL